

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Компьютерный анализ и инжиниринг литейной технологии

Кафедра-разработчик

Металлургические и литейные технологии

Направление (специальность) подготовки

22.06.01 - Технологии металлов

Код и наименование

Наименование ООП

22.06.01_03 - Литейное производство

Код и наименование

Квалификация (степень) выпускника

Образовательный стандарт Форма обучения

Исследователь, преподаватель-исследователь

ФГОС Очная

Соответствует ФГОС ВО Утверждена протоколом заседания кафедры № 8 от 24.06.2015 г.

Thoug

Программу разработал:

профессор, доцент, к.т.н.

В.М. Голод

1. Цели и результаты изучения дисциплины

1.1. Цели изучения дисциплины

Учебная дисциплина «Компьютерный анализ и инжиниринг литейной технологии» ориентирована на ознакомление и освоение методологии и инструментария, которые используются для эффективного управления качеством отливок при минимизации затраты ресурсов на их производство и потому представляют особый интерес для ученых и специалистов-литейщиков в последние десятилетия. В рамках дисциплины обсуждаются взаимосвязи, существующие между технологическими факторами производства отливок и их качеством (дефектностью). Значительное внимание уделяется современным методам компьютерного моделирования литейных процессов, обеспечению их надежности и адекватности используемых моделей.

Целью изучения дисциплины является формирование знаний в области использования компьютерного анализа литейных процессов при решении задач проектирования и управления литейной технологией. Именно этот подход определяют как инжиниринг, т.е. совокупность видов интеллектуальной деятельности, имеющей своей конечной целью получение наилучших (оптимальных) результатов от капиталовложений или иных затрат, связанных с реализацией проектов различного назначения за счет наиболее рационального подбора и эффективного использования различных ресурсов (материальных, трудовых, технологических и финансовых) в их единстве и взаимосвязи с методами организации и управления проектами.

1.2. Результаты обучения (компетенции) выпускника, в формирование которых вносит вклад освоение дисциплины

Код	Результат обучения (компетенция) выпускника ООП			
Оби	Общенаучные			
ОК-1	способность совершенствовать и развивать свой интеллектуальный и общекультурный уровень и профессионализм, устранять пробелы в знаниях и обучаться на протяжении всей жизни			
ОК-2	владеть навыками развития научного знания и приобретения нового знания путем исследований, оценки, интерпретации и интегрирования знаний, проведения критического анализа новых идей			
ОК-6	способность самостоятельно приобретать с помощью информационных технологий и использовать в практической деятельности новые знания и умения, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности			
ОК-8	владение навыками формирования и аргументации собственных суждений и научной позиции на основе полученных данных, умение анализировать и делать выводы по социальным, этическим, научным и техническим проблемам, возникающим в профессиональной деятельности, с учетом экологических последствий			
Про	фессиональные			
ОПК- 6	способность и готовность выполнять расчетно-теоретические и экспериментальные исследования в качестве ведущего исполнителя с применением компьютерных технологий			
ПК-1	владение базовыми знаниями теоретических и прикладных наук и их самостоятельное развитие с использованием в профессиональной деятельности при анализе и моделировании, теоретическом и экспериментальном исследовании материалов и процессов литья			
ПК-2	использование на практике интегрированных знаний естественнонаучных, обще-			

профессиональных и специальных дисциплин для понимания проблем направления "Литейное производство", умение выдвигать и применять идеи, вносить самостоятельный вклад в данную область науки, техники и технологии
владение навыками самостоятельного использования технических средств для измерения и контроля основных параметров технологических процессов, структуры и свойств материалов и изделий из них, планирования и реализации исследований и разработок

Знать:

• базовые модели теории литейных процессов на уровне, необходимом для их применения при решении прикладных задач;

Уметь:

- применять методы компьютерного моделирование при исследовании литейных процессов и проектировании литейной технологии;
- получать количественные результаты, ориентированные на решение прикладных задач теории литейных процессов и управления литейной технологией;
- формулировать прикладные задачи для использования аппарата компьютерного моделирования;

Иметь навыки:

- разработки компьютерных программ для решения прикладных задач теории литейных процессов и управления литейной технологией;
- исследования литейных процессов и управления качеством отливок на основе синтеза моделей и анализа результатов моделирования..

2. Место дисциплины в ООП

Дисциплина «Компьютерный анализ и инжиниринг литейной технологии» согласно федеральному учебному плану преподается на 4 году обучения аспиранта. Ее изучение базируется на результатах освоения следующих дисциплин ООП: «Математика», «Моделирование процессов и объектов в металлургии» и «Теории литейных процессов». Результаты изучения дисциплины «Компьютерный анализ и инжиниринг литейной технологии» используются при научно-исследовательской работе аспирантов и выполнении квалификационных работ.

3. Распределение трудоёмкости освоения дисциплины по видам учебной работы и формы контроля

3.1. Вилы учебной работы

C.1. Bildbi y rediren puddibi		
Виды учебной работы	Трудоёмкость, ач	Итого, ач
	4 год	
Лекции (Л)	1	1
Лабораторные занятия (ЛЗ)	-	1
Практические занятия, семинары (ПЗ)	-	1
Контроль самостоятельной работы студентов (КСРА)	6	6
Самостоятельная работа студентов (СРА)	65	65
в том числе творческая проблемно-ориентированная	16	16
самостоятельная работа (ТСРА)		
Экзамены (Э) (подготовка, сдача)	-	-
Общая трудоемкость освоения дисциплины	в академических часах,	72
	ач	
	в зачётных единицах,	2
	зет	

3.2. Формы контроля

Формы текущего контроля	Количество	Итого	
и промежуточной аттестации	4 год	111010	
Текущий контроль			
Контрольные работы (КРб), шт.	-	-	
Коллоквиумы (Кк), шт.	-	-	
Расчетно-графические работы (РГР), шт.	-	-	
Рефераты (Реф), шт.	-	-	
Курсовые проекты (КП), шт.	-	-	
Курсовые работы (КР), шт.	-	-	
Промежуточная аттестация			
Зачеты, (3), шт.	1	1	
Экзамены, (Э), шт.	-	-	

4. Содержание и результаты обучения

Вклад дисциплины в формирование результатов обучения выпускника (компетенций) и достижение обобщённых результатов обучения (описаны в разд. 1) происходит путём освоения содержания обучения и достижения частных результатов обучения, описанных в данном разделе.

4.1. Разделы дисциплины и виды учебной работы

	Темы	Л	ПЗ	CPA
1.	Введение.			
1.1	Установочная лекция	1	-	-
1.2.	1.2. Общие представления о технологическом процессе литья как управляемой сложной технико-производственной системе			
2.	Системный анализ технологических процессов литья			
2.1.	Иерархическая и операционная классификация технологических процессов литья	-	-	5
2.2.	Сравнительная характеристика средств анализа технологии	-	-	4
2.3.	Этапы декомпозиции и системного анализа литейной технологии	-	-	6
3.	Компьютерный анализ литейной технологии			
3.1.	Направления и методы численного анализа литейной технологии	-	-	2
3.2.	Информационное обеспечение компьютерного анализа на основе термодинамического моделирования литейных сплавов	-	-	2
3.3.	Экспериментальное определение локальных параметров компьютерных моделей	-	-	8
3.4.	Оценка адекватности многофакторных компьютерных моделей	-	-	8
4.	Адаптация средств компьютерного анализа к условиям производства			
4.1.	Локальная и обобщенная регистрация хода технологических процессов и эволюции условий производства	-	-	10
4.2.	4.2. Методические основы, этапы и средства адаптации компьютерных - моделей к условиям производства -		-	8
4.3.	Анализ практики производственной адаптация средств компьютерного анализа	-	-	6

5.	Инжиниринг литейной технологии			
5.1.	.1. Поиск оптимальных условий производства отливок на основе компь-			4
	ютерного анализа технологии			
5.2.	5.2. Примеры производственного инжиниринга литейной технологии		-	6
Итого по видам учебной работы, ач				72
	Итого по видам учебной работы, зет			2
	Общая трудоемкость освоения, ач / зет	72/2		

4.2. Содержание разделов и результаты изучения дисциплины

Темы, разделы	Результаты освоения дисциплины
1. Введение	
Общие представления о технологическом процессе литья как управляемой сложной технико-производственной системе	анализу производственных технологических систем
2. Системный анализ технологических процесс	
2.1. Иерархическая и операционная классификация технологических процессов литья 2.2. Сравнительная характеристика средств	операций для различных методов литья Знание инструментов технологического
анализа технологии	анализа литейных процессов
2.3. Этапы декомпозиции и системного анализа литейной технологии	Знание этапов и приемов системного анализа литейной технологии
3. Компьютерный анализ литейной технологии	1
3.1. Направления и методы численного анализа литейной технологии	Знание методологии и инструментария численного анализа литейной технологии
3.2.Информационное обеспечение компьютер-	Знание методологии и возможностей
ного анализа на основе термодинамического моделирования литейных сплавов	термодинамического анализа при фазовых превращениях. Умение использовать программные средства термодинамического моделирования литейных сплавов
3.3. Экспериментальное определение локальных параметров компьютерных моделей	Знание методов экспериментального определения локальных параметров компьютерных моделей. Умение использовать программные средства решения обратных задач
3.4. Оценка адекватности многофакторных компьютерных моделей	Знание процедур оценки адекватности моделей. Умение реализовать необходимые приемы
4. Адаптация средств компьютерного анализа	к условиям производства
4.1. Локальная и обобщенная регистрация хода технологических процессов и эволюции условий производства	Знание технических средств регистрации хода технологических процессов и эволюции условий производства.
4.2. Методические основы, этапы и средства адаптации компьютерных моделей к условиям производства	компьютерных моделей к условиям производства. Умение проектировать
4.3. Анализ практики производственной адаптации средств компьютерного анализа	Знание условий и методов производственной адаптации средств компьютерного

	анализа технологии		
5. Инжиниринг литейной технологии			
5.1. Поиск оптимальных условий произ-	Знание приемов и методов оптимизации		
водства отливок на основе компьютерного условий производства отливок			
анализа технологии			
5.2.Примеры производственного инжиниринга	Знание приемов и методов использования		
литейной технологии	компьютерного инжиниринга литейной		
	технологии		

5. Образовательные технологии

Преподавание дисциплины ведется с применением следующих видов образовательных технологий:

- 1. Информационные технологии обучение в электронной образовательной среде с целью расширения доступа к образовательным ресурсам, увеличения контактного взаимодействия с преподавателем, построения индивидуальных траекторий подготовки, объективного контроля и мониторинга знаний студентов.
- 2. Проблемное обучение стимулирование студентов к самостоятельному приобретению знаний, необходимых для решения конкретной проблемы.
- 3. Контекстное обучение мотивация студентов к усвоению знаний путем выявления связей между конкретным знанием и его применением.
- 4. Индивидуальное обучение выстраивание студентом собственной образовательной траектории на основе формирования индивидуальной образовательной программы с учетом интересов студента.
- 5. Междисциплинарное обучение использование знаний из разных областей, их группировка и концентрация в контексте решаемой задачи.

Виды и содержание учебных занятий

- В учебном процессе для достижения определенных результатов обучения и компетенции используются следующие формы организации учебного процесса: установочная лекция, самостоятельная работа, контроль, подготовка сообщений-докладов, консультация, зачет.
- 1. Установочная лекция передача учебной информации от преподавателя к студентам с использованием технических средств, направленная на приобретение студентами новых теоретических и фактических знаний.
- 2. Самостоятельная работа изучение студентами теоретического материала, оформление конспектов лекций, написание сообщений-докладов, подготовка презентаций, работа в электронной образовательной среде и др. для приобретения новых теоретических и фактических знаний, теоретических и практических умений.
- 3. Консультация индивидуальное общение преподавателя со студентом, руководство его деятельностью с целью передачи опыта, углубления теоретических и фактических знаний, приобретенных студентом на лекциях, в результате самостоятельной работы, в процессе написания сообщения-доклада и др.
 - 4. Контроль самостоятельной работы.

В преподавании курса используются:

- самостоятельная работа аспирантов с научно-технической литературой, а также информационными источниками по выбранному профилю аспирантской исследовательской работы для формирования реферативных материалов, подготовки публикаций и тематических презентаций;
- консультации по планированию, формированию и редактированию указанных материалов;

6. Лабораторный практикум

Лабораторный практикум не предусмотрен

7. Практические занятия

Практические занятия не предусмотрены

8. Организация и учебно-методическое обеспечение самостоятельной работы студентов

Вид самостоятельной работы	Примерная трудоёмкость, ач	
Текущая СРА		
работа с учебной литературой	25	
опережающая самостоятельная работа (изучение нового материала до его	-	
изложения на занятиях)		
самостоятельное изучение разделов дисциплины	20	
выполнение домашних заданий, домашних контрольных работ	-	
подготовка к лабораторным работам, к практическим и семинарским	-	
занятиям		
подготовка к контрольным работам, коллоквиумам, зачётам	4	
подготовка к экзаменам	-	
другие виды СРА (указать конкретно)	-	
Итого текущей СРА:	49	
Творческая проблемно-ориентированная СРА		
выполнение расчётно-графических работ	-	
выполнение курсового проекта или курсовой работы	-	
поиск, изучение и презентация информации по заданной проблеме,	10	
анализ научных публикаций по заданной теме		
работа над междисциплинарным проектом	-	
исследовательская работа, участие в конференциях, семинарах,	6	
олимпиадах		
анализ данных по заданной теме, выполнение расчётов, составление схем	-	
и моделей на основе собранных данных		
другие виды ТСРА (указать конкретно)	-	
Итого творческой СРА:	16	
Итого СРА:	65	

Примерные темы рефератов и подготавливаемых презентаций:

- 1. Знакомство с основными схемами литейной технологии и методами ее контроля и инжиниринга.
- 2. Метод литья стали в неметаллические формы. Системный анализ этапов технологии и факторов управления качеством литья.
- 3. Метод кокильного литья стали. Системный анализ этапов технологии и факторов управления качеством литья.

- 4. Метод литья по выплавляемым моделям. Средства решения задачи направленного затвердевания фасонной отливки. Ревизия набора исходных данных по различным литературным источникам.
- 5. Термодинамическое моделирование кристаллизации сплавов алюминия для информационного обеспечения задачи направленного затвердевания фасонной отливки.
- 6. Информационное обеспечение задачи затвердевания фасонной отливки в неметаллической форме путем решения обратной задачи.
- 7. Разработка производственной программы адаптации средств компьютерного анализа к условиям новой (модернизированной) литейной технологии.
- 8. Проектный инжиниринг и оптимизация литейной технологии для различных способов литья.

9. Учебно-методическое обеспечение дисциплины

9.1. Адрес сайта курса

http://www.foundry.spb.ru/html/education/aspir.shtml.

9.2. Рекомендуемая литература

Основная:

- 1. Баландин Г.Ф. Теория формирования отливки. М., МГТУ им. Н.Э.Баумана, $2001.-360~\rm c.$
- 2. Голод В.М., Корнюшкин О.А. Теория литейной формы. Механика и теплофизика. СПб, СПбГТУ, 2002. 108 с.
- 3. Голод В.М., Денисов В.А. Теория, компьютерный анализ и технология стального литья. СПб., ИПЦ СПГУТД, 2007. 610 с.
- 4. Голод В.М., Савельев К.Д., Басин А.С. Моделирование и компьютерный анализ кристаллизации многокомпонентных сплавов на основе железа. СПб., Изд-во Политехн. ун-та, 2008. 372 с.

Дополнительная:

- 1. Неуструев А.А., Моисеев В.С. Автоматизированное проектирование технологических процессов литья. М., МГАТУ,1994, 256с.
- 2. Васильев В.А. Физико-химические основы литейного производства. М., 2001. 336 с.
- 3. Голод В.М., Савельев К.Д. Вычислительная термодинамика в материаловедении. Изд-во Политехн. ун-та, 2010. 218 с.
- 4. Голод В.М., Радгударзи Т.А. и др. Компьютерные технологии в моделировании металлургических процессов. Лабораторный практикум. СПб., СПбГПУ, 2007. 101 с.

Электронные и Internet-ресурсы:

Российские сетевые ресурсы

1. iBooks.ru (Айбукс)

http://ibooks.ru/;

http://elib.spbstu.ru

Коллекция полнотекстовых учебных изданий по естественно-научным, прикладным, гуманитарным и экономическим дисциплинам.

Договор с ООО «Айбукс» № 1-12/14К на оказание услуг по предоставлению доступа к электронным книгам ЭБС «Айбукс.ру/ibooks.ru» от 08.12.2014. Срок подписки 08.12.2014 – 19.12.2015. Доступ по паролю читателя библиотеки СПбПУ.

2. Библиографический указатель книг «Политехнический институт - высшей школе»

http://goo.gl/5GNxA

Собственная реферативная база данных. Свободный доступ.

3. Распределенная электронная библиотека ЭПОС

http://arbicon.ru/projects/EPOS/

Электронные библиотеки вузов Российской Федерации, доступные через единый интерфейс поиска. Содержит учебную и учебно-методическую литературу, авторефераты диссертаций, материалы конференций, другие образовательные и научные ресурсы.

Договор о сотрудничестве с НП «АРБИКОН» № С/53-2 от 13.03.2012. Доступ бессрочный.

4. Электронная библиотека ГОУ «СПбГПУ»

http://elib.spbstu.ru

Полнотекстовая база данных научных и образовательных ресурсов, в основном созданных авторами-политехниками. Свидетельство о регистрации средства массовой информации № Эл № ФС77-43830 от 08.02.2011. Свидетельство о государственной регистрации базы данных № 2011620135 от 16.02.2011.

5. Сводный каталог периодики библиотек России

http://ucpr.arbicon.ru/

Сводный каталог периодики с указанием библиотек - держателей каждого выпуска периодического издания.

Договор о сотрудничестве НП «АРБИКОН» № С/53-2 от 13.03.2012. Свободный доступ.

Зарубежные сетевые ресурсы

1. Cambridge Journals Digital Archive

www.journals.cambridge.org/archives

Архив научных журналов издательства Cambridge University Press. по 2011 г.

Доступ предоставлен консорциумом НЭИКОН, без ограничения сроков.

2. EBSCO Academic Search Complete

http://search.ebscohost.com/

Коллекция статей из 9000 журналов по различным дисциплинам с 1887 по 2015 год.

Договор с НП «НЭИКОН» №177/14 Д от 31.12.2014. Доступ до 31.01.2016.

3. OATD (Open Access Theses and Dissertations)

http://oatd.org

Полнотекстовая база данных дипломных работ и диссертаций. Свободный доступ.

4. Science

http://www.sciencemag.org/journals

Мультидисциплинарный журнал Science издательства American Association for the Advancement of Science (AAAS). Доступны номера с 1997 по 2015 год, а также архив Science Classic Digital Archive с 1880 по 1996 год.

Акт сдачи-приемки работ по доступу к материалам издательства от НП «НЭИКОН» от 01.10.2014 в рамках исполнения госконтракта от 25.02.2014 № 14.596.11.0002 Министерства образования и науки и ГПНТБ России. Доступ до 30.09.2015.

5. Scopus

http://www.scopus.com

Крупнейшая в мире база данных рефератов и цитирования, индексирует более 20000 наименований научно-технических и медицинских журналов, 30 000 книг и 5,5 млн. конференций.

Договор с ГПНТБ России № 2/БП/33 от 01.11.2014. Доступ до 31.05.2015.

6. Springer

http://link.springer.com/

Предоставляет доступ в режиме on-line к текущим номерам журналов, журнальным архивам, электронным книгам, изданным 2005 – 2010 гг., а также к информационным ресурсам: Springer Protocols; Springer Materials, включая Landold Boernstein, ZentralBlatt MATH, Springer References. Договор с НП «НЭИКОН» № 135/14-Д от 30.10.2014. Доступ с 01.09.2014 по 31.08.2015. Архивные права до 01.01.2017.

7. Web of Science

http://webofscience.com/

Самая авторитетная в мире аналитическая и цитатная база данных журнальных статей, объединяет 3 указателя: Science/Social Sciences/Arts&Humanities Citation Index и включает более 12 500 наименований журналов, 120 000 материалов конференций, 50 миллионов статей и 800 миллионов цитирований.

Договор с ГПНТБ России № 1/БП/50 от 01.11.2014. Доступ к текущей БД (2014 – 2015) до 31 мая 2015 г., к архиву (2007 – 2013) – бессрочно.

Договор с НП «НЭИКОН» №177/14-Д от 31.12.2014. Доступ к архиву (2000–2006) – бессрочно.

8. Wiley

http://onlinelibrary.wiley.com/

Полная коллекция статей из 1537 журналов по различным дисциплинам с 1993 по 2015 год.

Договор с ФГУП ВО «Академинторг» РАН № АИТ 14-3-260 от 20 октября 2014 г. Срок доступа – до 31.12.2015 г.

Электронно-библиотечные системы

- 1. http://dl.unilib.neva.ru Электронная библиотека ГОУ «СПбГПУ».
- 2. http://arbicon.ru/projects/EPOS/ Электронное полнотекстовое объединенное собрание (ЭПОС). Некоммерческое Партнерство «Ассоциация Региональных Библиотечно Информационных Консорциумов» (НП АРБИКОН). Договор № С/53-2 от 13.03.2012 о сотрудничестве в области развития библиотечно-информационных ресурсов и сервисов. Бессрочный доступ.
- 3. http://www.ibooks.ru ЭБС «Айбукс»/ibooks. ООО «Айбукс» Договор № 1-12/14К от 08.12.2014 на оказание услуг по предоставлению доступа к электронным книгам ЭБС «Айбукс.py/ibooks.ru» с 08.12.2014 до 19.12.2015.

Методические рекомендации по оформлению студенческих работ (рефератов, курсовых и дипломных проектов и работ и др.)

URL: http://moodle.spbstu.ru/course/view.php?id=96 (доступ свободный)

9.3. Технические средства обеспечения дисциплины

Компьютерный класс ПЭВМ с микропроцессором не ниже Pentium IV, объем ПЗУ не меньше 2-3 ГБ, объем ОЗУ не меньше 512 МБ.

10. Материально-техническое обеспечение дисциплины

1. Учебная ауд.2

1. Компьютеры с установленными программными продуктами: операционная система MicrosoftWindowsXP PRO, Антивирус Касперского, 7-zip (архиватор), программный комплекс «POLYCAST» (разработка кафедры), программный комплекс «POLYTHERM» (разработка кафедры), Лицензированный пакет Thermo-Calc (разработка фирмы «Thermo-Calc Software», Sweden) 2. Роутер Wi-Fi для доступа к сети интернет; 3. Доска магнитномаркерная; 4.Столы, стулья.

11. Критерии оценивания и оценочные средства

Промежуточная аттестация по результатам изучения дисциплины проходит в форме зачета (включает в себя ответы на теоретические вопросы). Формирование итоговой оценки по дисциплине - с учетом оценки работы студента в семестре.

Цифровое	Словесное	Описание
выражение	выражение	
5	Отлично	Выполнен полный объем работы, ответ студента полный и
		правильный. Студент способен обобщить материал, сделать
		собственные выводы, выразить свое мнение, привести
		иллюстрирующие примеры
4	Хорошо	Выполнено 75% работы, ответ студента правильный, но
		неполный. Не приведены иллюстрирующие примеры,
		обобщающее мнение студента недостаточно четко выражено
3	Удовлетвори	Выполнено 50% работы, ответ правилен в основных моментах,
	тельно	нет иллюстрирующих примеров, нет собственного мнения
		студента, есть ошибки в деталях и/или они просто отсутствуют
2	Неудовлетво	Выполнено менее 50% работы, в ответе существенные ошибки в
	рительно	основных аспектах темы.

Критерии оценки зачета

Студент допускается к зачету, если: выполнил все предусмотренные виды самостоятельной работы. Зачет проходит в устной форме или в форме тестирования.

Оценка «зачтено» выставляется студенту, который

- прочно усвоил предусмотренный программный материал;
- правильно, аргументировано ответил на все вопросы, с приведением примеров;
- показал глубокие систематизированные знания, владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данного курса, других изучаемых предметов
 - без ошибок выполнил практическое задание.

Обязательным условием выставленной оценки является правильная речь в быстром или умеренном темпе.

Дополнительным условием получения оценки «зачтено» могут стать хорошие успехи при выполнении самостоятельной работы, систематическая активная работа на практических занятиях.

Оценка **«не зачтено»** Выставляется студенту, который не смог раскрыть основной вопрос даже на 50%, в ответах на другие (дополнительные) вопросы допустил существенные ошибки или не может ответить на дополнительные вопросы, предложенные преподавателем. Оценивается качество устной и письменной речи, как и при выставлении положительной оценки.

11.1. Критерии оценивания

Оценка освоения дисциплины включает текущий контроль в виде презентаций по самостоятельно подготовленным рефератам, итоговую аттестацию в конце семестра в виде зачета. Оценка качества освоения дисциплины проводится по результатам защиты отчетов и качества выполненного и представленного реферата, а также зачета.

11.2. Список вопросов для оценки знаний на зачете:

- 1. Система литейных процессов и их взаимосвязи при различных технологических условиях. Условия устойчивого функционирования технологической системы.
- 2. Система уравнений для моделирования литейных процессов. Декомпозиция литейных систем для различных технологических условий.
- 3. Моделирование гидродинамических процессов при литье. Диагностика и инжиниринг условий заполнения формы.
- 4. Моделирование и управление гидравлическими процессами при заливке форм. Диагностика и инжиниринг режимов заливки.
- 5. Моделирование и регулирование тепловых процессов при литье. Диагностика и инжиниринг условий затвердевания отливок.
 - 6. Диагностика и инжиниринг условий формирования структуры отливок.
- 8. Информационное обеспечение моделирования затвердевания фасонной отливки путем решения обратной задачи.
 - 9.Производственная адаптация средств компьютерного анализа литейной технологии